"All the world's a stage we pass through." - R. Ayana

Friday, 1 July 2016

Don’t Ask for Freedom – Live It!


Don’t Ask for Freedom – Live It!





“The only way to deal with an unfree world is to become so absolutely free that your very existence is an act of rebellion.”
 – Albert Camus


That quote pretty much sums it up, at least on one level. What’s fundamentally dystopic is that humanity petitions others for their freedom, as if it’s something to be granted by someone else in a position of authority over them. Not only is that counter intuitive at a very deep level, but it reinforces the very paradigm from which they are trying to escape.

It’s very much like putting the cart before the horse – and then the horse complains about it and asks those who did it to change the situation. There may be a time to straighten out a misunderstanding and stupid mistake by pointing out the obvious in a particular situation, but ultimately it’s up to the bridled human to have some “horse sense” and just say no to the situation and be its true independent self and not cooperate with being yoked into bondage and just break free from the bridle and reins…and dump the saddle as well.

That metaphor doesn’t fully describe this phenomenon, but we all get “yoked” into situations in our lives as its built into the very nature of the matrix. Anything from compromising personal relationships with friends, family and loved ones to employment or imposed legal restrictions. This is no small thing we’re encountering here in this earth-human experience. The question remains – how do we deal with these challenges on both a micro and the much more profound macro spiritual level?


stockholmbeast

 

Why Petition Pathological Lying Psychopaths?

 

Just look at the world today. Unfortunately, while this fact that such non-empathic, power-crazed personages is well known to be the case amongst rulers, politicians, bankers, corporate monsters and the Orwellian media, people still take their word, hoping against hope that their empty promises will come true. What is that? Is it lethargy, apathy, psychotic denial, mind control, or what? Most likely it’s a convergence of many such conditions, but the reality of this form of mass Stockholm syndrome is absolutely pathetic.


Stockholm Syndrome 101:


Stockholm syndrome, or capture-bonding, is a psychological phenomenon described in 1973 in which hostages express empathy and sympathy and have positive feelings toward their captors, sometimes to the point of defending and identifying with the captors. These feelings are generally considered irrational in light of the danger or risk endured by the victims, who essentially mistake a lack of abuse from their captors for an act of kindness.

Stockholm syndrome can be seen as a form of traumatic bonding, which does not necessarily require a hostage scenario, but which describes “strong emotional ties that develop between two persons where one person intermittently harasses, beats, threatens, abuses, or intimidates the other.” One commonly used hypothesis to explain the effect of Stockholm syndrome…suggests that the bonding is the individual’s response to trauma in becoming a victim. Identifying with the aggressor is one way that the ego defends itself. When a victim believes the same values as the aggressor, they cease to be perceived as a threat. [Emphasis mine] (source)

Sound familiar? That’s society at large. Just the abuse/sbuser cycle is rife in society, and designedly so. After all, these so-called rulers have themselves been abused by their handlers, physical and/or interdimensional, and so pass on that same paradigm. Hence the massive propagation of fear as the ultimate controlling signal. It’s the implanted and socially engineered parasitic mindset, be it archontic, wetiko or some other transdimensional explanation of this energetic vampirism. The dynamic is there and it’s designed to disempower and control through intimidation, fear and ignorance of the truth.

What are they afraid of ultimately? What is it they are trying to suppress? Because underlying this is the empowering reality that we can break from that cycle at any time; first by identifying what is going on and then by making the necessary changes in our thinking, behavior and attitudes while continuing to grow in manifestation of the infinite divine expression within each of us.


gandhi


Our Expression Is Who We Are

 

Gandhi’s famous quote above is more than just a nice slogan. It’s extremely deep – in fact as deep as you can possibly go when it comes to fully realizing the magnificence of our true selves.

The most powerful and impactful effect any of us can have is being who we truly are. To what degree we’re willing to manifest our true self is the challenge we all face, including the apparent nuts and bolts on how we do that in a practical way, one step at a time as we continually raise our levels of consciousness.

Essentially it’s not complicated at all. Being honest, lovingly forthright and sovereign comes naturally to the soul. It’s the rest of our convoluted, conditioned and reflexive self that needs to snap out of the hypnosis and catch up.

Changing our personal environment is a big start. Cut away the hindrances to where you can gather some momentum in manifesting your integral, honest and authentic self. Drop the downers and energy vampires out of your life. You’re not helping them by continuing on as just another compromised gnome to appease and avoid confrontation. That’s the matrix working through our horrific psycho-social programming to hold us back at as low of a frequency as possible – and to NOT venture out into our full-on freedom but stay firmly in the yoke of their parasitic grip.

There’s plenty of motivation to do this for anyone even half awake. The exterior world of the system is closing down at a frantic pace, and your life, mine, and those of our loved ones and the many wonderful people worldwide as well as the life of our very planet are at stake.It reminds me of when young men were called to war and supposedly battle for the freedom of their homeland. When the calling came, however manipulated, families respected it.

It’s called the courage of one’s convictions.

The beauty of our current situation is that the contest and opportunity we’re engaging in is a spiritual one, with nothing but empowerment involved. It’s not a physical battle, nor another futile political struggle, but a war of ideas, truth vs lies, love vs hate and selfishness, and a willingness to go into unknown territories of discovery that few have ever experienced, never mind manifested, before.

And what ultimately is the proof of what we’re endeavoring to see manifested on earth? Our very lives. If we’re not living it, at whatever cost to our past paradigms and self image, we are only perpetrating the frustration and ultimate problem we say we want to help dissolve.


flare4

 

 

It’s A Process – Make Wise Choices But Don’t Hold Back

 

It doesn’t necessarily happen overnight, but it can. At least the initial break to where we convince ourselves we’re serious. That’s when the inspiration and empowerment steps up. In fact, each act of personal commitment has the same effect. The challenges don’t stop, but it gets easier in many ways. It can be pretty daunting at times to continue up the mountain, but wow is it worth it! And oh how the world yearns for our example, liberating signals and bright, free flares on the darkening landscape!

That should motivate anyone. After all, what are we here for? To live selfish lives of comfort, ease and false security, afraid of personal change and the unknown? Or manifesting our true selves and stepping out to learn new and exciting things, all while transforming the world around us and helping precipitate its best possible outcome.

Yeah, it’s that cool! So what’s with the fear?

We each have such magnificence to be manifested, but it must be set free!

That goes for anyone and everyone – including me. Just say “yes” to the challenges one step at a time and it will all unfold.

It’s not that complicated.

See your shining face on the mountain!

Much love always, Zen


*For more of Zen’s articles and interviews see his Timeline.

 


- Scroll down through ‘Older Posts’ at the end of each section


Do you LIKE this uniquely informative site?
Hours of effort by a genuinely incapacitated invalid are required every day to maintain, write, edit, research, illustrate, moderate and publish this website from a tiny cabin in a remote forest.
Now that most people use ad blockers and view these posts on phones and other mobile devices, sites like this earn an ever shrinking pittance from advertising sponsorship. This site needs your help.
Like what you see? Please give anything you can -  
Contribute any amount and receive at least one New Illuminati eBook!
(You can use a card securely if you don’t use Paypal)
Please click below -




Spare Bitcoin change?


And it costs nothing to share this post on Social Media!
Dare to care and share - YOU are our only advertisement!



For further enlightening information enter a word or phrase into the random synchronistic search box @ the top left of http://nexusilluminati.blogspot.com


And see


 New Illuminati on Facebook - https://www.facebook.com/the.new.illuminati

New Illuminati Youtube Channel -  https://www.youtube.com/user/newilluminati/playlists

New Illuminati’s OWN Youtube Videos -  
New Illuminati on Google+ @ For New Illuminati posts - https://plus.google.com/u/0/+RamAyana0/posts

New Illuminati on Twitter @ www.twitter.com/new_illuminati


New Illuminations –Art(icles) by R. Ayana @ http://newilluminations.blogspot.com

The Her(m)etic Hermit - http://hermetic.blog.com



DISGRUNTLED SITE ADMINS PLEASE NOTE –
We provide a live link to your original material on your site (and links via social networking services) - which raises your ranking on search engines and helps spread your info further!

This site is published under Creative Commons (Attribution) CopyRIGHT (unless an individual article or other item is declared otherwise by the copyright holder). Reproduction for non-profit use is permitted & encouraged - if you give attribution to the work & author and include all links in the original (along with this or a similar notice).

Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution!

If you like what you see, please send a donation (no amount is too small or too large) or leave a comment – and thanks for reading this far…

Live long and prosper! Together we can create the best of all possible worlds…


From the New Illuminati – http://nexusilluminati.blogspot.com

Thursday, 30 June 2016

Climate Change Ruins Food: Rising CO2 is reducing nutritional value of food, impacting ecosystems


Climate Change Ruins Food
Rising CO2 is reducing nutritional value of food, impacting ecosystems

Women harvest rice in Nepal. An estimated two billion people are already deficient in dietary zinc and iron, an aspect of malnutrition that has been termed “hidden hunger”. Some researchers think that shifts in nutritional content in major crops as a consequence of increasing atmospheric carbon dioxide could lead to more people being at risk of mineral deficiencies. Photo courtesy of the International Rice Research Institute on Flickr under a CC BY-NC-SA 2.0 license.



 Women harvest rice in Nepal. An estimated two billion people are already deficient in dietary zinc and iron, an aspect of malnutrition that has been termed “hidden hunger”. Some researchers think that shifts in nutritional content in major crops as a consequence of increasing atmospheric carbon dioxide could lead to more people being at risk of mineral deficiencies. 
Photo courtesy of the International Rice Research Institute on Flickr under a CC BY-NC-SA 2.0 license.




Heightened atmospheric CO2 levels are cutting the proportions of protein and other vital nutrients in plants, impacting crops, people, pollinators and ecosystems.


Rice fields in Kashmir, India. Staple crops such as rice and wheat are forecast to become less nutritious as a result of increasing carbon dioxide levels in the atmosphere. Photo courtesy of sandeepachetan.com travel photography on Flickr under CC BY-NC-ND 2.0 license
Rice fields in Kashmir, India. Staple crops such as rice and wheat are forecast to become less nutritious as a result of increasing carbon dioxide levels in the atmosphere. 
Photo courtesy of sandeepachetan.com travel photography on Flickr under CC BY-NC-ND 2.0 license


  • As CO2 levels rise, so do carbohydrates in plants, increasing food’s sugar content. While carbon-enriched plants grow bigger, scientists are finding that they contain proportionately less protein and nutrients such as zinc, magnesium and calcium.
  • A meta-analysis of 7,761 observations of 130 plant species found that overall mineral concentrations in plants declined by about 8 percent in response to elevated CO2 levels — 25 minerals decreased, including iron, zinc, potassium and magnesium.
  • New research found that as atmospheric CO2 rose from preindustrial to near current levels, the protein content in goldenrod pollen fell by 30 percent. Bees and other pollinators rely heavily on goldenrod as protein-rich food for overwintering. The loss of pollinators could devastate many of the world’s food crops.
  • Research into the correlation between CO2 concentrations and the nutrient content of food is in its early stages. More study is urgently needed to determine how crops and ecosystems will be altered as fossil fuels are burned, plus mitigation strategies.


Among the myriad impacts climate change is having on the world, one in particular may come as a surprise: heightened atmospheric CO2 levels might be adversely affecting the nutritional quality of the food you eat. As carbon dioxide in the atmosphere continues to increase, you could end up eating more sugar and less of important minerals such as zinc, magnesium and calcium — without even realizing it. Those effects could also be reverberating up the food chain and altering ecosystems in as yet poorly understood ways.

For plants, a rise in atmospheric carbon dioxide actually boosts productivity by stimulating photosynthesis. They make more carbohydrate and grow larger — seemingly a good thing. But because other nutrients don’t increase and can’t keep pace with the augmented carbohydrate, this potential boon to our food supply isn’t all that it seems: plants end up having a higher carbohydrate to protein ratio, and relatively lower concentrations of minerals.

Put simply: atmospheric carbon dioxide acts as a sort of fertilizer to grow bigger, leafier plants, but those larger broccolis and lettuces actually contain less nutritional value per portion than their predecessors grown in the preindustrial, pre-fossil fuel world.

And that could be a problem for the world’s already malnourished people, for bees seeking protein-rich pollen so they can safely overwinter, and for ecosystems that could be thrown out of balance by changes in plant nutrition.

The human implications of these ongoing changes to our food supply came under the spotlight in April when the US Global Change Research Program (USGCRP) published a major report on the impact of climate change on human health. One of its key findings was that rising carbon dioxide will reduce the nutritional quality of food.

Allison Crimmins, of the US Environmental Protection Agency, and a lead author of the food safety chapter in the USGCRP report, told Mongabay about some of the ways in which this is likely to be felt around the world: “In certain developing countries, reduced nutritional value of foods will aggravate existing protein deficiencies, particularly in children. In the US and other developed countries however, dietary protein deficiencies are uncommon. In those cases, an increased ratio of carbohydrates and fewer essential minerals — essentially more starchy and more sugary foods — could potentially contribute to or exacerbate existing chronic dietary deficiencies or obesity risks, though how big a role this impact would play on a person’s overall nutrition remains uncertain.”


Deciphering the CO2 / plant nutrition relationship


In a 2014 study that informed the USGCRP report, researcher Irakli Loladze, of the Bryan College of Health Sciences, described the projected increase in dietary starch and carbohydrate as comparable to adding a “spoonful of sugars” to each 100 grams (3.5 ounces) of dry plant matter. When we’re being told not to eat more than a few teaspoons-worth of sugar per day, this sounds like a lot.

What will be the consequences, Loladze asks, if this additional sugar intake is unavoidable and lifelong? How, for example, might that extra daily suger exacerbate the health problems of the 25 million Americans, 98.4 million Chinese, and 65 million Indians who are part of the growing global diabetes epidemic? And how might those health impacts escalate as atmospheric carbon levels rise annually through the 21st century?

Loladze’s meta-study — which examined thousands of observations of plants grown under high carbon dioxide conditions — was an attempt to prove a theoretical prediction he made back in 2002. We’ve known for decades that plants grown under high carbon dioxide conditions have reduced protein concentrations, and the mechanism behind that change is fairly well understood: more carbohydrate dilutes the protein within the leaf. In addition, increased CO2 changes the rate of transpiration — the uptake of water through the roots and evaporation through the leaves — and affects the amount of nutrients plants draw from the soil. However, higher rates of photosynthesis have different effects on different minerals.


Wheat. Carbon dioxide promotes plant growth by boosting photosynthesis and carbohydrate production in the plant. But other nutrients don’t keep pace with this increase, resulting in higher carbohydrate to protein ratios, and lower concentrations of minerals. These shifts in nutritional quality could have implications for human health around the world. Photo courtesy of Žarko Šušnjar on Flickr, under a CC BY-SA 2.0 license
Wheat. Carbon dioxide promotes plant growth by boosting photosynthesis and carbohydrate production in the plant. But other nutrients don’t keep pace with this increase, resulting in higher carbohydrate to protein ratios, and lower concentrations of minerals. These shifts in nutritional quality could have implications for human health around the world. Photo courtesy of Žarko Šušnjar on Flickr, under a CC BY-SA 2.0 license


A theory known as ecological stoichiometry — which examines the balance of chemical elements in living systems — led Loladze to reason that minerals should also be affected by a proportional increase in carbohydrate synthesis and the associated knock-on effects this has on plant metabolism. But although a few studies supported his hypothesis in the early 2000s, the evidence was limited.

“There was considerable opposition to my idea,” Loladze told Mongabay. “The stoichiometric theory [upon which I based my argument] was not well known back then. Being a mathematician, I was viewed by some plant experts as an outsider with simplistic arguments that would not pan out in the real world.”

No one would fund the large-scale research effort Loladze needed to investigate his prediction further. Lacking backing and unemployed, he remained determined to test his theory with data. “With no money and no academic affiliation, the only way to get data was to compile [findings] from the existing literature,” he said.

Meanwhile, scientists around the world were increasingly studying the CO2 nutrient effects that interested Loladze, but their results were perplexing: while increases in atmospheric carbon decreased plant mineral concentrations in some studies, minerals increased in others, or showed no significant change

Loladze combined the data from numerous studies — that together had highly variable results — into one large meta-analysis, and he found a clear signal in the noise. A decade after he began work, he proved his prediction to be correct: when he collated the results of 7,761 observations of 130 plant species, he found that overall mineral concentrations in plant tissues declined by around 8 percent in response to elevated carbon dioxide levels. In all, 25 minerals were found to decrease, including iron, zinc, potassium and magnesium.


Tussock moth caterpillars feeding on leaves. Plants and the insects that feed on them form the basis of most terrestrial ecosystems, so nutritional shifts caused by rising atmospheric carbon dioxide levels will likely have impacts that extend up the food chain, but as ecosystems are so complex, it’s difficult to predict exactly how those changes will play out over time. Photo courtesy of Bjorn Watland on Flickr under a CC BY-SA 2.0 license
Tussock moth caterpillars feeding on leaves. Plants and the insects that feed on them form the basis of most terrestrial ecosystems, so nutritional shifts caused by rising atmospheric carbon dioxide levels will likely have impacts that extend up the food chain, but as ecosystems are so complex, it’s difficult to predict exactly how those changes will play out over time. Photo courtesy of Bjorn Watland on Flickr under a CC BY-SA 2.0 license


“One important aspect of Loladze’s study is its emphasis on trace elements, like zinc,” James Elser, of Arizona State University, and a proponent of the ecological stoichiometry theory on which Loladze based his work, told Mongabay. “These are often neglected in considerations of plant nutrition but agronomists and others are increasingly aware of the importance of these trace elements [not only] in limiting crop production, but also in human health and are now provisioning them in fertilizers.”

At the same time Loladze was looking at all available data on the nutrient responses of plants, Samuel Myers of Harvard University was also trying to pinpoint the impact of carbon dioxide on plant mineral content.

Whereas Loladze included data on wild as well as food crop species, and non-edible tissues as well as edible, Myers focused specifically on zinc and iron in six food crops. His research team grew the crops under different atmospheric CO2 conditions, and found a similar pattern: both zinc and iron declined by about 5-10 percent in wheat, rice, soybeans, and field peas when grown in a high carbon dioxide setting.


On the trail of trace elements and “hidden hunger”


Although a more consistent picture is now emerging of what happens to plant nutrients as carbon dioxide levels rise, it’s still not clear exactly how serious a problem this will be for people’s health.

Minor changes in mineral concentrations are unlikely to affect people already consuming more than sufficient quantities for good health, like many in the industrialized world. And if edible plants grow larger under higher carbon dioxide, then simply eating more may compensate for the reduced mineral concentration, though this could have consequences in terms of extra calories consumed.


Goldenrod in Virginia, USA. This is an essential late season source of food for bees, but a recent study found that with rising carbon dioxide levels, the nutritional quality of its pollen is decreasing. This could affect bee survival over the winter. Pollinators such as bees play a crucial part in our food supply. Photo courtesy of Bridget Leyendecker on Flickr under a CC BY 2.0 license.Goldenrod in Virginia, USA. This is an essential late season source of food for bees, but a recent study found that with rising carbon dioxide levels, the nutritional quality of its pollen is decreasing. This could affect bee survival over the winter. Pollinators such as bees play a crucial part in our food supply. Photo courtesy of Bridget Leyendecker on Flickr under a CC BY 2.0 license.


This picture changes markedly in the developing world. Deficiencies in micronutrients are globally common there, with an estimated 2 billion people lacking in dietary zinc and iron — a serious problem long recognized by the United Nations. As the USGCRP report stated, “Globally, chronic dietary deficiencies of micronutrients such as vitamin A, iron, iodine, and zinc contribute to “hidden hunger,” in which the consequences of the micronutrient insufficiency may not be immediate­ly visible or easily observed. This type of micro­nutrient deficiency constitutes one of the world’s leading health risk factors and adversely affects metabolism, the immune system, cognitive devel­opment and maturation — particularly in children.” The report also noted that around 40 percent of people in the US are likely consuming less than the average daily requirement of calcium and magnesium.

Given the current prevalence of “hidden hunger” some experts expect that rising CO2 levels and corresponding declines in plant nutrition could have a major impact on the health of those already suffering from, or at risk of, malnutrition — with developing nations in Africa and Asia likely to be the hardest hit.

But more research is needed to quantify potential impacts. Studies such as those done by Loladze and Myers have so far only looked at the plants themselves, and not the food products that arise from them, cautions Elser. This “doesn’t necessarily represent the nutritional contents of the foods at the point of consumption, once they have been processed and prepared. So, the ultimate nutritional impact of the CO2 effect requires more investigation.”

“I agree that the conclusions in both [studies] are somewhat alarming, but they should be taken for what they are — just a couple of papers making estimations of potential impact that need to be verified by agroecology, climate, types of foods, etc,” Patrick Webb, Professor of Nutrition at Tufts University, told Mongabay. “And remember that over the [20th century] time-frames the [studies] refer to, there is a rapid expansion of bio-fortified cropping (non-GMO) and a surge in processed food consumption globally, much of which is micrononutrient fortified. I only say this to point out that these papers don’t lead to a conclusion that ‘we’re going to run out of nutrients!’ Simply, that we need to be wary of these kinds of potentially negative impacts of GHGs [greenhouse gases] even on our food supply, and such impacts are bound to be greater in some places than others.”


Native bees, wasps, butterflies, moths, flies and other wild pollinators are vital to the world’s agriculture and to ecosystems. No one knows for certain how rising carbon dioxide levels and corresponding falling protein levels in plants will impact these species long term. Image by Edward Sanders courtesy of the Biodiversity Heritage LibraryNative bees, wasps, butterflies, moths, flies and other wild pollinators are vital to the world’s agriculture and to ecosystems. No one knows for certain how rising carbon dioxide levels and corresponding falling protein and mineral levels in plants will impact these species long term. Image by Edward Sanders courtesy of the Biodiversity Heritage Library


“[T]he issues are being discussed among international agriculture researchers, certainly,” continued Webb, who is also Director for USAID’s Feed the Future Nutrition Innovation Lab. “The challenge… is to document the pace of change [in plant nutritional value] for different regions of the world, for different kinds of crops. Only then will we know what kinds of policy changes need to be [put] in place to respond to what is happening (or not happening) at a scale significant enough to warrant action.”

Last year Myers and his colleagues looked at what projected declines in crop zinc content could mean for people in 188 countries. They found that under predicted increases in atmospheric carbon dioxide, 138 million more people would be at risk of zinc deficiency by 2050, largely concentrated in Africa and South Asia.

“The effect we have identified highlights an issue of social justice,” Myers and his co-authors wrote. “The wealthy world’s CO2 emissions are putting the poor in harm’s way.”

While the problem can theoretically be solved by identifying the regions and populations most at risk from hidden hunger, and then focusing mitigations such as mineral fortification programs there, logistical hurdles will likely prevent fortified foods from reaching everyone who need them, now and into the future, Loladze points out in his 2014 paper. Another option is to explore crop cultivars for selective breeding that may be less susceptible to nutrient declines under higher carbon dioxide levels.

Loladze also urges more research, asserting that a greater understanding of exactly how nutrient declines occur could be an important step in responding to their effects. “Elucidating the relative role of each mechanism — dilution [of nutrients] by carbohydrates, reduced transpiration, altered demands for nutrients and so on — and linking them to genomic changes will help us to develop mitigation strategies.”


Food chain and ecosystem changes


While the full impact on human health of hidden hunger is still being investigated, we’re not the only ones likely to be affected: as plants form the basis of most terrestrial ecosystems “changes in plant based nutrition will extend up to all feeding organisms as part of the food chain,” Lewis Ziska of the US Department of Agriculture told Mongabay.

“Generally this means that the vegetation [in a CO2 enriched environment] is of poorer quality for the animals consuming it — insect herbivores, deer, etc,” Elser explained. “However, this is not necessarily always the case. For example, lower nitrogen content in grass [a consequence of the carbohydrate dilution effect] has been shown to favor the success of locusts.”


A worker bee in a honeycomb. The serious decline of protein in goldenrod, an important fall crop that sustains North American bees through the winter, could be harming these pollinators, but more study is needed to separate out this particular dietary stressor from other major stressors including chemical pesticide use. How CO2 levels are impacting other pollen-providing plants and pollinators around the world has not been studied. Photo by Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license
A worker bee in a honeycomb. The serious decline of protein in goldenrod, an important fall crop that sustains North American bees through the winter, could be harming these pollinators, but more study is needed to separate out this particular dietary stressor from other major stressors including chemical pesticide use. How CO2 levels are impacting other pollen-providing plants and pollinators around the world has not been studied. Photo by Richard Bartz, Munich Makro Freak & Beemaster Hubert Seibring licensed under the Creative Commons Attribution-Share Alike 2.5 Generic license


Studies have shown that some insect herbivores can compensate for the less nutrient rich plants found in high CO2 environments by eating more, but their growth, development, and reproduction can be affected, Loladze said. Crop damage may also be higher if insects need to consume greater plant quantities to survive. Some laboratory studies have shown that even with compensatory feeding to make up for deficiencies, insects are more likely to starve to death, or could end up consuming damaging quantities of toxic compounds. In the wild, generalist species may respond by switching plant hosts, and over time evolutionary responses could be expected too.

Another ecosystem outcome is the lower nutrient content found in dead leaves, Elser added. “This can slow down the cycling of nutrients in soil and thus impact subsequent productivity of the grassland or forest.”

Research just published by Ziska and his colleagues illustrates another important way CO2 induced nutritional changes are likely impacting wild ecosystems and human food crops. His team examined Smithsonian National Museum specimens of the flowering plant goldenrod collected between 1824 and 2014, to see how pollen quality changed as atmospheric carbon dioxide levels rose — they saw a high correlation. As carbon dioxide concentrations rose from preindustrial levels of 280 parts per million to near current levels of 398 parts per million, the protein content in the most recent pollen samples fell by 30 percent. The greatest protein drop was seen between 1960 and 2014, when atmospheric CO2 levels rose most dramatically.


US Department of Agriculture Agricultural Research Service entomologist Dr. Jeff Pettis examines a bee colony in McFarland, CA in 2014. Bees are one of nature’s many pollinators and are crucial to the production for fruits and vegetables —including apples, squash and almonds. Honeybees are responsible for pollinating approximately $15 billion worth of US crops annually. Their disappearance would have massive repercussions for our food supply. Photo by David Kosling / USDA.
US Department of Agriculture Agricultural Research Service entomologist Dr. Jeff Pettis examines a bee colony in McFarland, CA in 2014. Bees are one of nature’s many pollinators and are crucial to the production for fruits and vegetables —including apples, squash and almonds. Honeybees are responsible for pollinating approximately $15 billion worth of US crops annually. Their disappearance would have massive repercussions for our food supply. Photo by David Kosling / USDA.


The team also ran a two-year experiment that grew goldenrod under an equivalent range of carbon dioxide concentrations, as well as at levels that are predicted for the coming decades. They observed similar protein declines.

Myers described these findings as “really fascinating,” and explained their significance: “This is important because goldenrod is one of the most ubiquitous late-blooming plants that provides fodder for bees before they overwinter.” Ziska and colleagues say that goldenrod is recognized as being “essential to native bee and honey bee health and winter survival”.

Not only is this likely to directly impact bee populations, “It is reasonable in the case of pollinators to suggest that reduced nutrition will increase vulnerability to other stressors; these other stressors could include things like neonics [pesticides] and/or invasives such as Varroa destructor [parasitic mites],” Ziska said. The loss of pollinators worldwide would drastically impact the many insect pollinated foods we enjoy today ranging from apples to oranges, almonds to cashews, cabbages to broccoli, coffee to tomatoes and blueberries.

“We are starting to design some experiments to see what these changes in protein content might mean for bee behavior and their effectiveness as pollinators,” Myers said. Research Myers and colleagues published last year quantified the role that pollinators play in ensuring human health via food nutrition. Their study concluded that without pollinators as many as 1.4 million additional people would die each year due to non-communicable diseases and micronutrient deficiencies.


The urgent need for research


The complexity of natural systems, and the numerous confounding factors that affect human health and animal health, make it difficult to foresee exactly how CO2 impacts on the food chain will play out for people or ecosystems. Mitigation strategies may be successful to a degree, once we know what we’re up against. Even better would be to rapidly cut fossil fuel emissions, making sure that long-term carbon dioxide increase predictions don’t materialize.

“The impact on the nutrition of our food is a direct effect of rising greenhouse gas emissions, so it is vital that we reduce these emissions,” Crimmins said. “Taking action on climate change now and reducing the world’s greenhouse gas emissions is not just an environmental imperative; it is crucial for protecting public health.”

“Bottom line is that humanity is operating like a monkey in a rocket ship,” Myers concluded. “We used to be passengers with all the other living creatures on the planet but we have climbed up into the cockpit and taken control. Now we are pushing buttons and flipping levers and rapidly changing most of the biophysical conditions on the planet with really very little idea what the consequences will be for our own health and wellbeing or that of the rest of the biosphere. Undoubtedly, there will be many more surprises along the way.”


A dwarf honey bee (Apis florea). The study of the impacts of carbon dioxide levels on plant nutrition has barely begun to be studied. As CO2 levels rise we are moving into uncharted territory. Photo by Gideon Pisanty (Gidip) licensed under the Creative Commons Attribution 3.0 Unported license


A dwarf honey bee (Apis florea). The impacts of carbon dioxide levels on plant nutrition has barely begun to be studied. As CO2 levels rise we are moving into uncharted territory. Photo by Gideon Pisanty (Gidip) licensed under the Creative Commons Attribution 3.0 Unported license




Citations


DeLucia, E.H., Nabity, P.D., Zavala, J.A., and Berenbaum, M.R. (2012) Climate Change: Resetting Plant-Insect Interactions. Plant Physiology 160: 1677-1685
Loladze, I. (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology and Evolution 17: 457-461
Loladze, I. (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3:e02245. DOI: 10.7554/eLife.02245
Müller, C., Elliott, J., and Levermann, A. (2014) Fertilizing hidden hunger. Nature Climate Change 4: 540-541
Myers, S.S., Zanobetti, A., Kloog, I. et.al. (2014). Increasing CO2 threatens human nutrition. Nature 510: 139-142
Myers, S.S., Wessells, K.R., Kloog, I., Zanobetti, A., and Schwartz, J. (2015) Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. Lancet Global Health 3: e639-e645
Smith, M.R., Singh, G.M., Mozaffarian, D., and Myers, S.S. (2015) Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. The Lancet 386: 1964-1972
Ziska, L., Crimmins, A., Auclair, A., DeGrasse, S., Garofalo, J.F., Khan, A.S., Loladze, I., Pérez de León, A.A., A. Showler, J. Thurston, and I. Walls, (2016) Ch. 7: Food Safety, Nutrition, and Distribution. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. U.S. Global Change Research Program, Washington, DC, 189–216. http://dx.doi.org/10.7930/J0ZP4417
Ziska, L.H., Pettis, J.S., Edwards, J., Hancock, J.E., Tomecek, M.B., Clark, A., Dukes, J.S., Loladze, I. and Polley, H.W. (2016) Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc. R. Soc. B. 283: 20160414
Article published by Glenn Scherer




For more information about climate change see http://nexusilluminati.blogspot.com/search/label/climate%20change  
- Scroll down through ‘Older Posts’ at the end of each section


Do you LIKE this uniquely informative site?
Hours of effort by a genuinely incapacitated invalid are required every day to maintain, write, edit, research, illustrate, moderate and publish this website from a tiny cabin in a remote forest.
Now that most people use ad blockers and view these posts on phones and other mobile devices, sites like this earn an ever shrinking pittance from advertising sponsorship. This site needs your help.
Like what you see? Please give anything you can -  
Contribute any amount and receive at least one New Illuminati eBook!
(You can use a card securely if you don’t use Paypal)
Please click below -




Spare Bitcoin change?


And it costs nothing to share this post on Social Media!
Dare to care and share - YOU are our only advertisement!



For further enlightening information enter a word or phrase into the random synchronistic search box @ the top left of http://nexusilluminati.blogspot.com


And see


 New Illuminati on Facebook - https://www.facebook.com/the.new.illuminati

New Illuminati Youtube Channel -  https://www.youtube.com/user/newilluminati/playlists

New Illuminati’s OWN Youtube Videos -  
New Illuminati on Google+ @ For New Illuminati posts - https://plus.google.com/u/0/+RamAyana0/posts

New Illuminati on Twitter @ www.twitter.com/new_illuminati


New Illuminations –Art(icles) by R. Ayana @ http://newilluminations.blogspot.com

The Her(m)etic Hermit - http://hermetic.blog.com



DISGRUNTLED SITE ADMINS PLEASE NOTE –
We provide a live link to your original material on your site (and links via social networking services) - which raises your ranking on search engines and helps spread your info further!

This site is published under Creative Commons (Attribution) CopyRIGHT (unless an individual article or other item is declared otherwise by the copyright holder). Reproduction for non-profit use is permitted & encouraged - if you give attribution to the work & author and include all links in the original (along with this or a similar notice).

Feel free to make non-commercial hard (printed) or software copies or mirror sites - you never know how long something will stay glued to the web – but remember attribution!

If you like what you see, please send a donation (no amount is too small or too large) or leave a comment – and thanks for reading this far…

Live long and prosper! Together we can create the best of all possible worlds…


From the New Illuminati – http://nexusilluminati.blogspot.com